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Abstract

Objective: The goal of this paper is to describe approaches for the joint analysis of repeatedly 

measured data with time-to-event endpoints, first separately and then in the framework of a single 

comprehensive model, emphasizing the efficiency of the latter approach. Data from the Johnston 

County Osteoarthritis Project (JoCo OA) will be used as an example to investigate the relationship 

between the change in repeatedly measured body mass index (BMI) and the time-to-event 

endpoint of incident worsening of radiographic knee OA that was defined as an increased 

Kellgren-Lawrence (K-L) grade in at least one knee over time.
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Methods: First, we provide an overview of the methods for analyzing repeated measurements 

and time-to-event endpoints separately. Then, we describe traditional (Cox proportional hazards 

model, CoxPH) and emerging (joint model, JM) approaches allowing combined analysis of 

repeated measures with a time-to-event endpoint in the framework of a single statistical model. 

Finally, we apply the models to JoCo OA data, and interpret and compare the results from the 

different approaches.

Results: Applications of JM (but not CoxPH) showed that the risk of worsening radiographic OA 

is higher when BMI is higher or increasing, thus illustrating the advantages of JM for analyzing 

such dynamic measures in a longitudinal study.

Conclusion: Joint models are preferable for simultaneous analyses of repeated measurement and 

time-to-event outcomes, particularly in a chronic disease context, where dependency between the 

time-to-event endpoint and the longitudinal trajectory of repeated measurements is inherent.
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Introduction

Longitudinal studies in which data are collected on participants over years or even decades 

have become increasingly popular in many epidemiological fields. Such studies enable the 

analysis of individual-level changes, represented by repeatedly measured variables, and 

relate the changing patterns to the development of conditions or diseases causing disability 

and death. Despite the advantages of having multiple time points, there are several 

challenges associated with longitudinal data analysis, including non-ignorable missing data 

and sparse examination times (1–4).

In addition, to monitor risk factors and health outcomes, these studies collect repeated 

measurements that can encompass different types of variables. Two of these, longitudinally 

measured variables (e.g., biomarkers, patient-reported outcome measures) and the time to 

occurrence of an event (e.g., joint replacement, death), are very common in epidemiological 

studies. These two types of data are often analyzed separately, without considering that 

longitudinal and survival processes are related (5). However, in a chronic disease context, 

dependency between time-to-event outcomes and longitudinal trajectories is inherent. The 

essential characteristic of such chronic conditions is that the course of disease is different 

from one person to another and can change over time for the same person. The repeatedly 

measured variables can help in understanding the nature of disease progression and provide 

better estimation of the risk for the event of interest (e.g., death, development or progression 

of disease, or hospital discharge after surgery).

Investigation of such longitudinal relationships between repeatedly measured variables and 

the event of interest can provide clinically relevant information about the likely course of 

disease in a given person. For example, to optimize treatment strategies in early rheumatoid 

arthritis (RA), it is important to understand the relationship between disease activity over 

time, represented by longitudinal DAS-28 measurements, and time to subsequent 
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radiographic joint damage. To evaluate the impact of the longitudinal response trajectory on 

the time-to-event outcome of interest over time, the data should be analyzed jointly (6). This 

is because neither the changes in evolution of longitudinal response (e.g., DAS-28) nor the 

risk for event (e.g., radiographic progression of RA) are observable continuously over time, 

only intermittently during clinic visits. Such analyses require statistical methodology that 

can relate these unobservable values both to each other and to observable data. However, 

epidemiological analyses for various chronic diseases, including rheumatic and 

musculoskeletal disease (RMDs), which might benefit from jointly using these data, often do 

not utilize this approach. This didactic paper on the use of joint models in rheumatology is 

therefore designed to provide an example of this methodology in a field where these models 

are not yet commonly used, despite their appropriateness.

The main goals of this paper are to (1) describe mainstream statistical approaches for the 

analysis of such data, (2) convince the reader of the advantages of joint analysis of 

longitudinal measures with time-to-event outcomes, and (3) demonstrate how to apply these 

methods in a real and relevant dataset, using data from the Johnston County Osteoarthritis 

Project (JoCo OA). First, we review the methods for analyzing time-to-event and repeated 

measurements outcomes separately. Then we describe traditional (the Cox proportional 

hazards model) and emerging (joint model) approaches allowing combined analysis of 

repeated measures with time-to-event outcomes in the framework of a single, comprehensive 

statistical model. Finally, we apply the models to the JoCo OA data, and then interpret and 

compare the results from the different approaches.

Overview of statistical models

Repeated Measurements and Linear Mixed Effects Model

The linear mixed effects model, or LMM, is a commonly used approach for analysis of 

repeated measurements (7). The term “mixed” refers to the fact that both fixed and random 

effects are included in the same model, where fixed effects relate to the mean cohort 

trajectory, and random effects are individual-specific characteristics that take into account 

the variability in individual trajectories within a cohort. LMM is valid under the assumption 

that the data are missing at random (8), which means that missing data can depend on some 

baseline characteristics and non-missing observations of the outcome at previous visits. 

Since this might be assumed in many situations where missingness is not associated with the 

outcome of interest, the use of LMM is justified in such applications. However, when 

attrition (for example, due to death, worsening of symptoms, or ineligibility of the 

participant) depends on missing data, e.g., is “informative”, the data are called “missing not 

at random.” In this situation, as the data collection is discontinued for such a person, leading 

to informative missingness, modeling the evolution of the longitudinal response using LMM 

may produce biased estimates (2, 3, 9).

Analysis of time-to-event data

When the main outcome under assessment is the length of the interval from the time origin 

until the occurrence of the event of interest (e.g., survival time until death), an appropriate 

methodology is required, as these data have unique properties that cannot be addressed with 
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standard statistical procedures. First, methods based on the normal distribution are not 

applicable for the analysis of survival times because they tend to be positively skewed, 

leading to violation of the normality assumption. Second and even more important, it is 

common that at the end of a study the actual survival times will often be censored, i.e., they 

are not observed for all individuals. The most common type of censoring, and the focus in 

this paper, is “right censoring” that occurs when a participant does not experience the event 

of interest by the end of his/her study follow-up.

The Cox proportional hazards model (CoxPH) (10) is one of the most commonly used 

approaches for analysis of time-to-event outcomes. In this model, the measure of interest is a 

‘hazard’, which is the instantaneous risk of the event given that a person has not experienced 

this event up to a specific time. CoxPH allows the analysis of the effect of one or more 

explanatory variables that may impact the hazard. Predictors that do not change over time 

are called time-independent variables and are among the most commonly analyzed in 

CoxPH. These predictors often include baseline measurements (e.g., exposure variables, risk 

factors, covariates, and/or confounders) or variables that do not change over time (e.g., sex, 

race, or a birth cohort).

The CoxPH model can also be extended to incorporate important explanatory variables that 

do change over the follow-up time period (11, 12). This extension, CoxPH with time varying 

covariates (TVCs), offers the opportunity to analyze data collected at different follow-up 

times for the same individual. In this model, a TVC is assumed to remain constant between 

two observations. Therefore, this model is appropriate for variables that either change in a 

known way (e.g., age, the dose of an administered drug,) or exist independently of 

individuals (e.g., air pollution levels) (13). These covariates can be associated with the risk 

for the event, but are independent of an individual’s time-to-event outcome.

However, the CoxPH with TVCs has limited ability to handle explanatory variables with 

fluctuation and measurement errors (14). As an illustration, consider how longitudinal 

measurements of BMI are handled in the CoxPH with TVCs. To obtain the value of BMI, 

both weight and height need to be measured. Although height is largely stable in the adult 

population, weight is subject to daily, weekly and seasonal variability due to fluid balance, 

food consumption and other factors such as physical exertion and external temperature (15, 

16). Measurement errors due to clothing and the calibration of the scale can lead to 

additional small fluctuations in weight and height. The intervals between visits might be 

intermittent, spanning a few weeks up to several years. In the CoxPH with TVCs, a value of 

BMI, observed and recorded only at a specific time, is assumed to remain constant between 

two visits and may be associated with the risk of the event at future time points until the next 

visit, as shown graphically in Figure 1. The blue dashed line in the bottom panel corresponds 

to the approximation of BMI trajectory in the Cox model, which is not a realistic description 

of the BMI evolution. Application of the CoxPH model to “internal” TVCs that can be 

collected only when the individual is available (such as variables measured with errors and 

not fully observed) can lead to biased results and incorrect inference (14, 17). Two 

approaches, developed in parallel in different scientific areas and for different purposes, can 

capture the biological fluctuations and heterogeneity in longitudinal trajectories: stochastic 

process models (18–20) and joint models (21). In the next sections, we focus on the latter 
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approach, which is more mainstream in biostatistics and thus may be easier to use for those 

familiar with LMM and CoxPH. Review and discussion of stochastic process models can be 

found elsewhere (19).

Joint Model

A joint model (JM) consists of two sub-models representing the dynamics of (a) the 

longitudinal sub-model and (b) the time-to-event sub-model, as reviewed elsewhere (6, 21–

24). The fundamental difference between the JM and the CoxPH with TVCs is that, unlike 

CoxPH, the JM combines the time-to-event model with an appropriate model for the 

repeated measurements of TVCs to simultaneously make inference on time-to-event and 

longitudinal processes. The JM technique is more appropriate than CoxPH with TVCs if 

there is interest in the effect of a TVC measured with error on the survival process. This is 

because the CoxPH with TVCs can severely underestimate the association between 

longitudinal and time-to-event data (17). In a standard specification of JM, at each time 

point the risk of event is associated with an unobserved value of the longitudinal outcome at 

the same time (Figure 1, red solid line). These are usually called the “true” values, as 

opposed to the “observed” longitudinal data (collected intermittently and potentially with 

errors), which are represented in the longitudinal sub-model as a sum of such unobserved 

“true” values and errors (usually modeled using LMM). The flexibility in parameterization 

of JM (e.g., through various extensions available in the R package JM(25)) allows 

incorporating not only the current value, but also dynamic characteristics of the longitudinal 

response in the model, e.g., the rate of change, cumulative history, or deviations from 

population trajectories (5). The survival process can depend on the current slope of the 

longitudinal trajectory (Figure 1, red arrows) to capture the situation where two individuals 

have comparable levels of a biomarker, but the rate of change is different and affects the risk 

of an event. We use the term “current” for both slope and value, meaning that the risk for an 

event at a particular time depends on the concurrent unobserved value of longitudinal 

outcome as well as the concurrent value of the slope of the true longitudinal trajectory. 

Alternatively, cumulative effects parameterization allows the entire history of a longitudinal 

response to be associated with the hazard of event.

Although JMs are becoming increasingly popular in different epidemiologic fields such as 

oncology (26, 27), cardiovascular diseases(28), nephrology(29), and endocrinology(30), 

these models are still not widely applied in rheumatology. Recently, JM was applied to a 

sample of seropositive arthralgia patients to investigate whether a change in individual levels 

of antibodies to citrullinated proteins/peptides (ACPAs) over time improves the prediction of 

future RA (31). Higher time-dependent ACPA levels were found to be significantly 

associated with the development of arthritis, but no difference over baseline measurements 

of ACPA levels was shown in predictive models.

In our working example, we use repeatedly measured BMI, which is a useful indicator of 

obesity, to investigate the effect of the longitudinal trajectory of BMI on the time-to-event 

outcome of worsening K-L grade in the knee. We chose this relationship given that 1) 

obesity is one of the most important knee OA risk factors (32); 2) BMI is a good example of 

a biomarker potentially measured with error; 3) BMI is a potentially modifiable risk factor; 
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4) the rate and direction of change in BMI may be as important as the value itself. Various 

parameterizations of JM can address known and previously discussed challenges in studying 

change in BMI and its effect on OA outcomes(33). We emphasize that most (if not all) of the 

challenges in dealing with repeatedly measured BMI and its change can be applied to other 

relevant variables in studying their impact on OA and other RMDs.

Working example

Data and measurements

The data used in this paper were collected from non-Hispanic African American and 

Caucasian men and women enrolled in the JoCo OA which is an ongoing, longitudinal 

population-based prospective study with clearly defined and repeatedly measured 

radiographic OA, comorbidities, various biomarkers, socio-demographic and physiological 

variables (34). JoCo OA was designed to determine risk factors associated with the 

occurrence and progression of osteoarthritis (OA). Our final sample comprised 2,286 

participants with 5,325 longitudinal measurements of BMI collected at four time-points: 

baseline and three follow-up visits (see Supplementary materials for the details on the 

selection procedure and for the baseline characteristics of this cohort). The time-to-event 

outcome, worsening radiographic OA (rOA) of the knee, was defined as an increase of one 

K-L grade or more from any baseline K-L score in at least one knee between two 

consecutive or intermittent visits. It is important to note that we include here a working 

example with a simplified analysis for brevity. In practice, other relevant covariates might be 

included in the analysis as appropriate.

Statistical analysis

The counting process form of the CoxPH model (12, 13) was used to evaluate the 

association of two TVCs, BMI and its change, with worsening knee rOA, with adjustment 

for baseline age and sex. The change in BMI was defined as percent change in BMI relative 

to a participant’s measurement at the previous visit. We used hazard ratios (HR) as measures 

of these associations, and 95% confidence intervals (CI) were used to express the variation 

around the HRs.

We fitted several JMs using the R package JM(25). A full mathematical description of the 

models, variables transformation and interpretation of coefficients are provided in the 

Supplementary material. In short, the first (basic) model (JM1) consists of the linear mixed-

effects model for longitudinal BMI data with normally distributed errors and a survival sub-

model that specifies the hazard of event as a function of the “true” longitudinal outcome (see 

definition in “Joint Model” section) with adjustment for gender and age at the baseline. In 

the second joint model (JM2), the risk depends on the slope of the “true” trajectory at that 

time. In the third model (JM3), we assumed that the risk depends on both the current “true” 

level and the slope of BMI at the same time. JM3 allows us to capture the situations where 

participants have similar levels of BMI but different rates of change, with this difference 

affecting the risk of an event. Longitudinal BMI values were logarithmically transformed to 

satisfy assumptions of normality. In this case, one unit increase of current level of TVC, 

which is log (BMI) now, corresponds to 2.7 fold (a mathematical constant, the base of the 
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natural logarithm) difference in BMI. Therefore, HR quantifies how many times higher the 

risk of event is for the same participant if his/her BMI at the same time would be 2.7 times 
higher. To convert it to more interpretable terms, we calculated the HR for a difference of 

25% in BMI at the same time for the same participant as follows. As a 25% (e.g., 1.25 fold) 

difference in BMI level corresponds to log (1.25) = 0.22 in log (BMI), the HR for BMI 
(Table 2) was calculated relative to 0.22 units difference in the current level of log (BMI) by 

taking the exponent of the corresponding coefficient multiplied by 0.22. For the longitudinal 

change of the BMI, we calculated the HR for BMI slope (Table 2) that compares an increase 

of 10% over time to an increase of 5% following the procedure previously described (29). 

The three JMs were compared using Bayesian Information Criterion (BIC) (35) to select the 

model with the best fit.

Results

In the CoxPH model with TVCs, higher BMI was associated with higher risk of worsening 

knee rOA (HR per 5 kg/m2, 1.49; 95% CI, 1.42–1.55). We also found, counter-intuitively, 

that increasing BMI over time was negatively associated with worsening rOA; specifically, 

the risk decreased by 8% for each 5% increase in BMI over time (HR per 5%, 0.92; 95% CI, 

0.89–0.95).

The results for JM analysis are shown in Table 1 representing the coefficients from the 

survival sub-model.

As previously mentioned, the corresponding coefficients can be interpreted in terms of 

percentage change rather than absolute change (see Supplementary materials). As shown in 

Table 2, JM1 finds the association between the current level of BMI and the risk for increase 

of K-L grade such that if a participant had a 25% higher BMI at the same time, the K-L 

grade risk was 1.4 times as high (HR, 1.39; 95% CI, 1.31–1.48). In JM2, the slope of BMI 

trajectory was found to have an association with incident increase in the K-L grade: if BMI 

increased by 10% each year, the risk for increase of the K-L grade is 4.6 times as high as 

compared to a 5% increase (HR, 4.59; 95% CI, 2.14–9.86). In JM3, both the current level 

(HR, 1.37; 95% CI, 1.29–1.46) and the slope of BMI (HR, 2.29; 95% CI, 1.20–4.36) were 

associated with worsening rOA. According to the BIC (Table 2), JM3 provided the best fit to 

the data compared to JM1 and JM2, providing evidence that the risk for an increase of the 

K-L grade depends on both the level and the slope of BMI at the current time.

Discussion

JM of longitudinal and time-to-event data continues as an emerging area of statistical 

research. In this paper, we demonstrated the usefulness and interpretability of the JM 

approach in rheumatology using OA, which is the most common form of arthritis and a 

leading cause of disability among adults in the USA(36, 37) and worldwide, as an exemplar. 

The association of body mass change over time in relation to OA is especially important as 

obesity is increasing in prevalence worldwide (38–41). While many studies have provided 

strong evidence that lowering body mass can reduce risk of OA development and 

progression (42–44), some have failed to demonstrate this effect potentially due to 

methodological difficulties in statistical analyses (33, 45). Our results using JM, but not 

Arbeeva et al. Page 7

Arthritis Care Res (Hoboken). Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CoxPH, show that the risk of increasing K-L grade (i.e., worsening radiographic OA) is 

higher when BMI is increasing, illustrating the advantages of JM for such dynamic measures 

in a longitudinal study. We chose OA as an example to emphasize the importance of detailed 

modeling of longitudinal trajectories of patients outcomes, in particular in relation to 

development of an RMD that is strongly associated with older age (46) and frequently is 

slowly progressive. One can envision such individual trajectories as personal histories of 

change that led one individual to developing OA and allowed another one to avoid this 

health problem. Taking advantage of longitudinal design together with this methodology can 

improve our understanding of the mechanisms of development and progression of such 

conditions, which in turn can optimize diseases prevention and management strategies.

The JM approach can be applied to a very broad family of RMDs that affect people at almost 

any age. Application of JM to clinical questions in rheumatology may clarify why the course 

and the severity of symptoms of RMDs vary from patient to patient, and from time to time. 

In addition, these models provide a natural structure for dynamic individual predictions of 

longitudinal and time-to-event outcomes (47), which is important both from patient and 

health provider perspectives. In recent papers (48, 49) JMs were used as a tool for 

optimizing medical screening strategies, in particular the frequency of the screening 

procedures for people with different stages of disease, which may allow providers to choose 

the optimal screening schedule for individuals based on their longitudinal history. This 

approach could maximize benefits and minimize medical costs by avoiding unnecessary 

screenings and interventions.

Importantly, JMs are also being increasingly used in clinical trials that are crucial to 

advancements in new drug therapies. In this setting, dropout is a common problem and 

raises concerns of non-ignorable missing data, in particular if a participant leaves the study 

due to an adverse reaction or a lack of effectiveness of the treatment. As mentioned above, 

ignoring the mechanism of missingness can cause bias in estimates in LMM. Perhaps most 

notably, in the JM framework, dropout time can be considered as a survival outcome, while a 

longitudinal sub-model can be used to obtain valid inferences with the correction for non-

ignorable dropout. Several papers have suggested that JM of longitudinal data and time to 

dropout not only provide unbiased estimates (6, 26), but also may require smaller sample 

sizes to achieve comparable power (50), both critical in driving the field forward to improve 

knowledge and health.

JMs also have some important limitations. First, JMs are computationally intensive and time 

consuming which might pose logistical challenges for researchers working with large data 

sets. Second, as with any statistical modeling, LMM and CoxPH (the two sub-models of JM) 

are based on specific assumptions, which should be properly tested. This prerequisite step 

becomes more critical when these models are being used jointly and should not be ignored. 

Our aim in this manuscript is to provide an introduction to the JM approach that is 

accessible for a clinical audience not necessarily familiar with advanced topics in mixed 

effects modelling and time-to-event analysis; we emphasize that collaboration with 

statistical experts in these methods is important in applying JMs in practice.
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In summary, the potential applications of JM in RMDs is underappreciated, though these 

methods provide clear advantages over traditional approaches (while incorporating strengths 

from these methods). Software is readily available to facilitate applications of JM to address 

relevant research and clinical questions in a statistically rigorous and coherent fashion. We 

hope to stimulate interest in these models among RMD researchers, with increased benefits 

to society through its use.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure1. 
Graphical representation of features of the Joint Model
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Table 1:

Three Joint Models for longitudinal BMI and/or longitudinal change in BMI with risk for incident worsening 

rOA of the knee fitted to JoCo OA data: Comparison under different parameterizations.

JM1 JM2 JM3

(BIC = 2604.2) (BIC = 2688.7) (BIC = 2602.8)

Gender: male versus female −0.08 (0.06) −0.09 (0.06) −0.09 (0.06)

Age at baseline
a
 in years 0.27 (0.03) 0.23 (0.03) 0.29 (0.03)

Log (BMI) 1.48 (0.14) N/A 1.42 (0.14)

slope of log (BMI) N/A 32.76 (8.38) 17.77 (7.09)

The numbers in the table represent the coefficients with standard errors from the time-to-event sub-model.

rOA, radiographic OA

BMI, concurrent value of Body Mass Index

In JM1, the survival process depends on the level of BMI at the same time point (concurrent level).

In JM2, the survival process depends on the slope of BMI at the same time point (concurrent slope).

In JM3, the survival process depends on the level of BMI and slope of BMI at the same time point.

BIC, Bayesian Information Criterion

a
Variable was standardized to have mean of 0 and standard deviation of 1
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Table 2

Three Joint Models for longitudinal BMI and/or longitudinal change in BMI with risk for incident worsening 

rOA of the knee fitted to JoCo OA data: Examples of clinical interpretation

HR for BMI* HR for BMI slope**

JM1 1.39 [1.31; 1.48] N/A

JM2 N/A 4.59 [2.14; 9.86]

JM3 1.37 [1.29; 1.46] 2.29 [1.20; 4.36]

BMI, concurrent value of Body Mass Index (logarithmically transformed)

In JM1, the survival process depends on the level of BMI at the same time point (concurrent level).

In JM2, the survival process depends on the slope of BMI at the same time point (concurrent slope).

In JM3, the survival process depends on the level of BMI and slope of BMI at the same time point.

HR, hazard ratio

*
HR for a difference of 25% in BMI at the same time point for the same individual

**
HR for increase of 10% versus increase of 5% at the same time point for the same individual
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